Organic Chemistry [D]

1. Crude oil is the source of many of the substances studied in organic chemistry.

a.	Fill in the gaps: [7]
	Crude oil is a of (compounds of
	and only).
	It is formed by the action of high pressure and temperature on dead sea-life.
	Different in crude oil can be separated by
	·
b.	Explain how the fractions of crude oil are separated industrially: [3]
c.	Name three fractions of crude oil and provide two uses for each: [9]
	Fraction:
	Uses:

Fraction:

Uses:

Fraction:

Uses:

d. A student has collected two liquid fractions, each at a different temperature, from a sample of crude oil using distillation in a laboratory and he can't remember which is which. Describe how he could identify the fraction collected at the higher temperature using its boiling point and viscosity. [4]

- Alkanes are the main constituents of crude oil. They form a homologous series of hydrocarbons.
 - a. Define the term homologous series: [2]

- b. The general formula for alkanes is C_nH_{2n+2} .
 - i. Write the formula of an alkane with 13 carbon atoms: [1]
 - ii. Write the formula of an alkane with 18 hydrogen atoms: [1]
- c. Draw two branched-chain (not straight-chain) isomers of hexane: [2]

- d. Alkanes make good fuels because their combustion is very exothermic.
 - i. Write a balanced equation for the complete combustion of propane: [2]
 - ii. Explain why carbon monoxide, a product of incomplete combustion, is toxic to humans: [2]

- e. Alkanes can react with chlorine or bromine under certain conditions.
 - i. State the condition required for such a reaction to occur: [1]
 - ii. Represent the reaction of methane with bromine using displayed formulae: [3]

- 3. Alkane molecules can be shortened by an industrial process known as *catalytic cracking*.
 - a. State the conditions required for this process: [2]
 - b. Write a balanced equation for the catalytic cracking of dodecane $(C_{12}H_{26})$: [3]

c. Explain why catalytic cracking is important to industry and the economy: [3]

- 4. The alkenes are a useful homologous series of unsaturated hydrocarbons that are produced when alkanes are catalytically cracked.
 - a. Define the term *unsaturated*: [1]
 - b. Draw a molecule of propene: [1]

- c. State:
 - i. The general formula of alkenes: [1]
 - ii. The name and formula of an alkene with 4 carbon atoms: [2]
- d. Describe, using a suitable diagram, how ethene reacts with bromine water and state the colour change observed: [3]

- 5. Polymers can be made from a wide variety of molecules and are used in almost every aspect of human activity.
 - a. Addition polymerisation of an alkene involves only one type of monomer.
 - i. Draw the monomer required to produce poly(ethene): [1]
 - ii. Draw a repeating unit of poly(propene): [2]

iii. State one function of poly(chloroethene): [1]

Organic Chemistry [D]

- 1. Crude oil is the source of many of the substances studied in organic chemistry.
 - a. Fill in the gaps: [7]

Crude oil is a **mixture** of **hydrocarbons** (compounds of **hydrogen** and **oxygen** only). It is formed by the action of high pressure and temperature on dead sea-life. Different **compounds** in crude oil can be separated by **fractional distillation.**

b. Explain how the fractions of crude oil are separated industrially: [3]

fractions have different boiling points [1]

each fraction rises up the column a different amount before... [1]

... condensing and being tapped off [1]

c. Name three fractions of crude oil and provide two uses for each: [9]

Fraction: **bitumen** [1]

Uses: roofing [1] and road surfacing [1]

Fraction: fuel oil [1]

Uses: fuel for ships [1] and power stations [1]

Fraction: naphtha [1]

Uses: solvents [1] and vehicle fuel [1]

- d. A student has collected two liquid fractions, each at a different temperature, from a sample of crude oil using distillation in a laboratory and he can't remember which is which. Describe how he could identify the fraction collected at the higher temperature using its boiling point and viscosity. [4]
 pour both fractions [1]
 the less runny fraction was collected at the higher temperature [1]
 measure the boiling point of both fractions [1]
 the higher boiling point fraction was collected at the higher temperature [1]
- Alkanes are the main constituents of crude oil. They form a homologous series of hydrocarbons.
 - a. Define the term homologous series: [2]

a series of compounds with similar chemical properties [1] and trends in physical properties [1]

- b. The general formula for alkanes is C_nH_{2n+2} .
 - i. Write the formula of an alkane with 13 carbon atoms: [1]

 $C_{13}H_{28}$

ii. Write the formula of an alkane with 18 hydrogen atoms: [1]

 C_8H_{18}

c. Draw two branched-chain (not straight-chain) isomers of hexane: [2]

Any two branched alkanes with the formula C_6H_{14} with ALL bonds and atoms shown [2]

- d. Alkanes make good fuels because their combustion is very exothermic.
 - i. Write a balanced equation for the complete combustion of propane: [2]

 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

ii. Explain why carbon monoxide, a product of incomplete combustion, is toxic to humans: [2]

it binds to haemoglobin in red blood cells [1]

```
reducing the oxygen carrying capacity of blood [1]
```

- e. Alkanes can react with chlorine or bromine under certain conditions.
 - State the condition required for such a reaction to occur: [1]
 ultra-violet light
 - ii. Represent the reaction of methane with bromine using displayed formulae: [3]

CH₄ and Br₂ reactants drawn with ALL bonds and atoms shown [1]

CH₃Br product drawn with ALL bonds and atoms shown [1]

HBr product drawn (formula alone is fine) [1]

- 3. Alkane molecules can be shortened by an industrial process known as *catalytic cracking*.
 - a. State the conditions required for this process: [2]

temp between 550 and 700°C [1] and Al_2O_3 or SiO₂ catalyst [1]

b. Write a balanced equation for the catalytic cracking of dodecane $(C_{12}H_{26})$: [3]

C₁₂H₂₆ reactant [1] alkane C₁₀H₂₂ or shorter product [1] corresponding alkene product [1]

- c. Explain why catalytic cracking is important to industry and the economy: [3]
 fractional distillation of crude oil produces more long chains than short [1]
 we require more short chains than long [1]
 cracking converts long chains into short chains [1]
- The alkenes are a useful homologous series of unsaturated hydrocarbons that are produced when alkanes are catalytically cracked.
 - a. Define the term *unsaturated*: [1]

has a C=C double bond [1]

b. Draw a molecule of propene: [1]

propene drawn with ALL bonds and atoms [1]

- c. State:
 - i. The general formula of alkenes: [1]

 C_nH_{2n}

ii. The name and formula of an alkene with 4 carbon atoms: [2]

butene [1], C₄H₈ [1]

d. Describe, using a suitable diagram, how ethene reacts with bromine water and

state the colour change observed: [3]

Br atoms add into molecule, one each side of the C=C double bond [1] suitable diagram showing this [1] colour change: orange \rightarrow colourless [1]

- 5. Polymers can be made from a wide variety of molecules and are used in almost every aspect of human activity.
 - a. Addition polymerisation of an alkene involves only one type of monomer.
 - i. Draw the monomer required to produce poly(ethene): [1]

ethene molecule drawn with ALL bonds and atoms [1]

- ii. Draw a repeating unit of poly(propene): [2]
 repeat unit drawn with bonds extending outwards [1]
 brackets and 'n' [1]
- iii. State one function of poly(chloroethene): [1]

making ropes [1]